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From wall measurements to three-dimensional turbulent-flow fields via GANs
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In this work, we aim to estimate the three-dimensional turbulent flow in a channel using wall
measurements of pressure and shear stress with 3D generative adversarial neural networks (GANs).
The research extends previous work of the coauthors on wall-parallel plane estimation based on two-
dimensional 2D GANs. We demonstrate that, with a moderate increase in the number of training
parameters, the entire reconstruction is achieved with only slightly lower accuracy than that of the
2D GANs. This approach will pave the way towards more efficient flow estimation from wall sensors.

INTRODUCTION

The estimation of turbulent flow fields from wall-
embedded sensors is a key aspect for the implementation
of boundary-layer flow control. In this framework, lin-
ear methods have proven to be able to obtain accurate
flow reconstructions up to the logarithmic region of chan-
nel flows [1]. Furthermore, deep neural networks [2] [3]
[4] have proven to increase significantly the accuracy of
these estimations, enabling an improved modelling of the
non-linear relation between wall and flow data.

In Ref. [4], two-dimensional (2D) wall-parallel in-
stantaneous velocity fields were reconstructed from wall-
pressure and wall-shear-stress measurements of a turbu-
lent open channel flow at a friction-based Reynolds num-
ber equal to 200. The approach was based on genera-
tive adversarial networks (GANs), which can cope with
non-linearities, and it was proved to work effectively in
establishing the relation between the wall measurements
and the velocity fields.

In the present work, we move from the previous 2D
flow-field reconstruction to a three-dimensional (3D) sce-
nario, i.e. the GANs are trained to perform a full 3D
reconstruction of the flow field. This allows reducing the
training to a single network, instead of having different
networks for each wall distance. As an additional ad-
vantage, a 3D description of the flow is readily achieved,
instead of relying on plane segmentation.

METHODOLOGY

The GAN consists of two networks: a generator and
a discriminator. The generator takes as input the wall
measurements of spanwise and streamwise shear stress
and pressure, producing the corresponding field as out-
put. Its training process is complemented with that of
the discriminator, whose goal is to detect whether a field
is original or produced by the generator. The genera-
tor is trained to obtain realistic fields so that it confuses
the discriminator, with both networks competing against
each other during training.

The main novelty with respect to Ref. [4] is the use
of 3D convolutional layers. In the generator, these lay-
ers are combined through multiple residual blocks, which

contribute to the stability and convergence of the train-
ing process.
The data set used for this work was obtained from a

direct numerical simulation (DNS) of a turbulent open-
channel flow at friction based Reynolds number equal
to 200. The dimensions of the domain are πh in the
streamwise direction (x), 2h in the wall-normal direction
(y) and π/2h in the spanwise direction (z). The domain
has 64, 128 and 64 points respectively, equispaced along
x and z. The region of interest for this work includes the
whole domain in the streamwise and spanwise directions,
and half the domain in the wall-normal direction, i.e.
from a wall to the mid-plane.

RESULTS

The network has been proven to successfully predict
the flow field with an error level comparable to that re-
ported in the 2D analysis. This result is very significant,
because with similar computational resources, it can pre-
dict at once many wall-parallel layers, which conform the
3D volume of interest. In particular, the generator of the
network implemented in the 2D setup [4] has about 1 mil-
lion of trainable parameteres, while in this work it has 9
million and it predicts 64 wall-normal planes.

FIG. 1. MSE of the prediction of the three components of
the velocity fluctuations as a function of the inner-scaled wall-
normal coordinate y+. The solid lines refers to the 3D predic-
tion presented in this work, and the dotted lines were collected
from the Ref. [4], with predictions at y+ = [15, 30, 60, 100].
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FIG. 2. (Top) Reference and (bottom) predicted instanta-
neous fields of (left) u, (middle) v and (right) w, for y+ = 10.

FIG. 3. (Top) Reference and (bottom) predicted instanta-
neous fields of (left) u, (middle) v and (right) w, for y+ = 70.

Figure 1 reports the normalized mean-squared error
(MSE) of the prediction along the wall-normal direction,
showing that the results obtained in this work have a
slightly lower accuracy than those from Ref. [4]. The
turbulent features are predicted with high accuracy in
the viscous layer, and then become progressively worse
through the buffer and logarithmic layers.

Figures 2 and 3 show a comparison of sample pre-
dicted instantaneous velocity fields from wall measure-
ments with respect to the target fields. The network per-

FIG. 4. Representation of turbulent structures with Q-
criterion for the predicted flow with GANs (top) and from
the original DNS dataset (bottom).

formance is much better in the vicinity of the wall, with
structures of different sizes being present in the predic-
tion. In particular, the streamwise streaks are very well
recovered. As one moves farther from the wall, the MSE
of the prediction increases, mainly due to attenuation of
the intensity of the structures and the filtering of the
smaller scales. This is expected, since the sizes of the
patterns observed in the wall data and the distance to
the wall determine the size of the structures that could
be detected at some point from wall measurements, in
line with the attached-eddy hypothesis.
One of the advantages of this 3D flow prediction with

respect to the 2D setup is that it allows to obtain a direct
3D visualization of the turbulent structures present in the
flow. Fig. 4 (top) shows a representation of the vortical
structures predicted from a sample of wall measurements.
Note that the structures in the near-wall region are very
accurately predicted.

CONCLUSIONS

We demonstrated that GANs with 3D convolutional
layers can efficiently predict the 3D turbulent channel
flow, with levels of accuracy similar to those of 2D GANs,
at a comparable computational cost. The method lacks
ability to reconstruct small-scale features far from the
wall, although this limitation is shared with linear meth-
ods and was also reported in the 2D analysis [4]. Hence
this limitation can be ascribed to a physical limitation
of the small-scale structures having a limited imprint on
the wall rather than to the reconstruction algorithm and
its implementation.
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[4] Güemes A. et al. (2021) “From coarse wall measurements
to turbulent velocity fields through deep learning”. Physics
of Fluids, vol. 33, no. 7, pp. 075121.

mailto:acuellar@ing.uc3m.es

	From wall measurements to three-dimensional turbulent-flow fields via GANs
	Abstract
	Introduction
	Methodology
	Results
	Conclusions
	Acknowledgements
	References


