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Active drag reduction in minimal flow units via deep reinforcement learning
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This contribution explores the suitability of deep reinforcement learning (DRL) as an active
control strategy to reduce the skin friction in wall-bounded flows. For that purpose, experiments
are carried out on a direct numerical simulation of a channel flow at Reτ ≈ 200 with a small
computational domain. The actuation is simulated as a volumetric force applied in the center of
one of the channel walls. The DRL agent is an artificial neural network fed by wall-shear stress and
pressure sensors. The agent learns an active control strategy tuning the volumetric force according
to the upstream flow conditions. Preliminary results show modest skin friction reduction, consistent
with an opposition control strategy.
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INTRODUCTION

The quest for efficient control strategies of wall-
bounded turbulent flows has fueled abundant research
over the last decades due to its relevance in countless
industrial and aeronautical devices. Among others, op-
position control has demonstrated being a simple, yet ef-
fective, closed-loop flow-control solution to tamper with
near-wall structures [1, 2], as well as with the large-scale
features present in the logarithmic layer [3].

Recent advances in machine learning (ML) are raising
the question on whether such methods can be efficient for
flow control. The challenge is dual: on the one hand we
search for effective control laws, even if in black-box form;
on the other, there is the chance that, interpreting what
is inside the black box, we might discover new intriguing
strategies to control the flow. Among ML control meth-
ods, deep reinforcement learning (DRL) is certainly one
of the most promising. DRL has been developed to iden-
tify active control policies for complex dynamical systems
[4]. The DRL agent, controlled by a deep neural network
(DNN), performs actions on an environment according
to its state. The actions are graded with a reward (based
on the goal to be achieved and, often, on the cost of the
action), that is used to progressively learn an optimized
control strategy. In the area of fluid mechanics, DRL has
been successfully applied in several applications, such as
controlling the wake behind a cylinder [5].

The capability of DRL to reduce the wall-shear stress
in a turbulent channel flow is explored in this work. The
environment is a minimal flow unit [6], which ensures
a good representation of the structures populating the
near-wall region and their dynamics.

METHODOLOGY

A direct numerical simulation (DNS) of a turbulent
channel flow based on the numerical implementation pre-
sented by Vela-Mart́ın et al. [7], sets the environment to
evaluate the performances of DRL in wall-bounded-flow
control. The friction Reynolds number is Reτ = uτh/ν ≈
200, being uτ the friction velocity, h the half channel

height and ν the kinematic viscosity. The size of the com-
putational box in the streamwise and spanwise directions
is πh and πh/2 respectively, which, together with Reτ ,
provides a good representation of the structures and the
dynamics of the near-wall region [6]. The agent is trained
using the proximal policy optimization (PPO) algorithm
[4] to control a volumetric force of characteristic size Lf

and duration Tf applied at the bottom wall, as defined
by Pastor et al. [2]. The agent reads shear and pres-
sure information from nine sensors placed on the bottom
wall, as inputs, and provides the values for the forcing
intensity f0, as output. The reward function driving the
learning process is defined as the temporal mean of the
difference in instantaneous skin friction at the lower wall
between the controlled and uncontrolled simulation. The
skin-friction sensor for the reward computation covers a
region over the entire streamwise direction at the bottom
wall and spanning 1.2h in the spanwise direction.
The training procedure consists in running two parallel

simulations with the same initial condition and allowing
the agent to actuate only in one of them. Comparison of
the wall shear in the two simulations allows a direct evalu-
ation of the effect of the actuation. The control command
consists of a single volumetric force action generated by
the agent. After each actuation, the forced simulation is
discarded and replaced by the non-forced case. In this
way, the agent learns how to act on a well-developed
turbulent flow without reminiscent effect of the previous
control action due to the periodicity of the channel flow.
The coefficients of the DNN driving the agent are ad-
justed every 8 episodes based on the effectiveness of the
control in reducing skin-friction.

RESULTS

Preliminary results are presented for a training set of
2800 episodes of duration Tepi ≈ 0.55h/uτ with forcing
duration Tf = 0.25h/uτ and size Lf = 0.2h. Figure 1
shows the averaged initial states of wall-normal velocity
pressure and shear conditioned to ∆τ > 0.001τ0, from
which it can be deduced that the agent learns to operate
with an opposition control strategy.
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FIG. 1. Fluid state before actuation conditioned to ∆τ > 0.01τ0 and a specific sign of f0. Top row, up-ward forcing, f0 > 0.
Bottom row, downward forcing, f0 < 0. Left column, vertical velocity at y+ = 15. Centre column, wall pressure. Right column,
wall shear. Velocity is normalised with uτ , while τ0 is used for pressure and shear.
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FIG. 2. Ensemble mean ⟨⟩ of ∆τ(t) versus time, normalised
with the mean skin friction of the base flow. Lines indicate
∆τ computed over (solid) reward region and (dashed) entire
bottom wall. Gray region indicates the period in which the
agent acts.

When f0 > 0 results in a skin-friction reduction, the
initial state is characterised by a Q2 event, with the ver-
tical velocity going towards the wall. Conversely, for
f0 < 0 the typical characteristics of Q4 events can be
observed.

Figure 2 presents the ensemble mean of ∆τ(t) as a
function of time for both the reward region and the entire
lower wall. Note that a single actuator covering 0.6% of
the wall area reduces the skin friction by a factor up to
0.15% in the reward region (0.01% in the entire wall)
with respect to the non-forced case. The actuation ratio
between positive and negative rewards is 1.42.

CONCLUSIONS

The preliminary results hints to the suitability of DRL
strategies for the active control of wall-bounded flows for
skin friction reduction. Although a deeper analysis is re-
quired to account for the different parameters involved in
the actuation, the reported results pave the way toward
model-free active control of wall-bounded turbulence via

DRL. By the time of the conference, it is expected that
this analysis will be extended to account for both the
effect of episode duration and the width of the reward
sensor. If the agent maintains its control capacity, its
range of action can be increased by controlling the dura-
tion of the applied volumetric force.
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