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This work focuses on the dynamics of a train of solid particles separated by a distance L flowing
near the interface of two co-flowing immiscible fluids in a microchannel of height h. Considering
that the particle diameter d is of the order of h but much smaller than L, we study numerically how
the balance between inertial migration, surface tension and external volumetric forces determine
the transverse position of the particles, the shape of the interface separating the two fluids and the
surrounding flow structure. Our study includes a systematic analysis of the influence of the governing
parameters (fluids viscosity ratio, interface and particle positions, Reynolds Re and capillary Ca
numbers and the inter-particle distance L) on the particle equilibrium position. Both inertial and
capillary migration are separately discussed. The validity of the linear solution in the limit of pure
inertial migration is thoroughly studied in the limit of non-deformable interfaces Ca = 0. On the
other hand, in the pure capillary regime Re = 0, we considered the distinguished limits of very large
and very small surface tension. In the later case, the amplitude of the interface deformation induced
by the particle is large, comparable to its diameter, but its influence is limited to a small region
upstream and downstream of the particle. In the limit of very large surface tension, even though the
amplitude of the deformation is small, the region of influence of the interface deformation λ is broad,
reaching values of the order of the inter-particle distance L when the surface tension is sufficiently
large. This parameter, then, introduces an additional characteristic length that determines the
asymptotic behaviour of the flow properties in the limit Ca−1 � 1. The numerical simulations
are carried out using the Finite Element Method combined with the Arbitrary Lagrangian-Eulerian
(ALE) method to model the deformation of the liquid-liquid interface.

INTRODUCTION

The development of complex fabrication techniques of-
ten implies the utilisation of particles embedded in one or
both of the fluids that eventually cross the liquid-liquid
interface, with encapsulation and coating being some of
the most relevant applications [1–4]. In these situations,
the couple effects between the hydrodynamic drag, in-
ertial effects, interface deformation and shear or strain
near the walls of the channels drive the movement of a
particle in a non-quiescent flow towards or away of the
fluid–fluid interface at low Reynolds numbers [5]. This
paper aims precisely to understand the physical mech-
anisms that determine the behaviour of a solid particle
by calculating the volumetric force f that is necessary
to keep the particle stationary between the interface and
the channel’s walls.

FORMULATION

We consider in this paper two immiscible liquids flow-
ing in a channel with height h. The two liquids form an
interface that is located at y = Γ. The total volumetric
flow rate of the two liquids is Q = Q1+Q2 and we assume
that both liquids have equal density ρ1 = ρ2 but different
viscosity µ1 6= µ2. A train of particles of diameter d travel
at its terminal velocity V ′ in one of the fluids. Each par-
ticle is separated by a distance L′ from the closest neigh-
bors, forming the periodic flow structure sketched in fig-
ure 1. The transverse location of the particle depends on
the intensity of a uniform body force -f ′ = −fey acting

on both fluids. To write the problem in non-dimensional
form, we chose the channel height h, the average veloc-
ity ū = Q/h and the diffusion time td = ρ2h

2/µ2 as
the characteristic length, velocity and time used to de-
fine the non-dimensional coordinates x = x′/h, the di-
mensionless fluid velocity vi = (ui, vi) = v′i/ū, pressure
p = p′/(µ2ū/h) and time t = t′/td. The average veloc-
ity ū and the properties of fluid 2 define the Reynolds
number of the flow Re = ρ2Q/µ2. Introducing the non-
dimensional variables, we obtained the non-dimensional
continuity and momentum equations, yielding

∇ · vi = 0 and Reρvi · ∇vi = −∇(pi + ρfx) +∇ · ¯̄τ ′,

with the sub-index referring to the lower i = 1 and upper
i = 2 fluid, respectively, and ¯̄τ ′ = µ(∇vi + ∇vT

i ). The
mass force f = f ′/[ū/td] is assumed to have only non-
zero vertical component f = fey.

In the reference frame attached to the particle, the ve-
locity of the liquids at the walls y = 0 and y = 1 is
written as vi = −V ex. Considering that the particle
center is located at x = xp = 0, we impose periodic-
ity conditions so that v(x = −L/2) = v(x = L/2) and
p(x = L/2) = p(x = −L/2)−∆p. After imposing µ1/µ2,
the vertical location of both the particle yp and the in-
terface Γ = Γ0 at x = ±L/2, both pressure loss ∆p and
flow rate Q1/Q are simultaneously calculated using an
iterative method that continues until mass conservation
1 =

∫ 1

Γ
u2dy +

∫ Γ

0
u1dy is satisfied in the whole compu-

tational domain. The velocity V = V ′/ū is determined
imposing zero force on the particle in x direction.
At the fluid-fluid interface we impose the continuity
of velocities v1 = v2 and the jump condition on the
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FIG. 1. Schematics of the flow configuration, including the geometrical and fluid-dynamical relevant parameters.

stress tensor n · (T1 − T2) = Ca−1n∇ · n with Ti =
−(pi + ρf · x)I + µ

(
∇vi +∇vT

i

)
, Ca = µ2ū/σ the cap-

illary number and σ the surface tension.

The non-slip and zero net torque conditions are ap-
plied to determine the motion of the rigid particles. The
implicit equation q(x, y, t) = Γ(x, t) − y = 0 describes
the location of the interface. Because q = 0 on the in-
terface at all times, the material derivative must satisfy
v · n = 0, with n = ∇q/|∇q| = (Γx,−1)/(1 + Γ2

x)1/2

the unit-length vector normal to Γ pointing from fluid 2
towards fluid 1.

CONCLUSION

In this paper we studied the dynamics of a train of solid
particles separated a distance L moving near the inter-
face of two co-flowing immiscible liquids. The presence of
the interface introduces a force that plays a crucial role to
determine the equilibrium position of the particles. The
first part of the work considered a non-deformable inter-
face corresponding to the limit of infinitely large surface
tension. In this limit, we recover the multiple equilibrium
behaviour when the particle is embedded in the less vis-
cous fluid. A maximum of three equilibrium positions is
found, two of them stable. When the particle travels in
the more viscous fluid, a unique and stable equilibrium
position was found regardless of the particle or the inter-
face positions. The asymptotic linear solution for the flow
variables ψ = ψ0 +Re ψ1 remains valid for values of the
Reynolds number as large as Re = 60 when µ1/µ2 > 1.
This is not the case when µ1/µ2 < 1 as non-linear effects
become relevant even when Re = 0.1 due to the greater
relative importance of the convective terms in fluid 1.
In the pure capillary regime Re = 0, we computed the
mass force necessary to keep the particle at a given ver-
tical location yp in a wide range of capillary numbers
10−4 < Ca−1 < 106. The results identified three dif-
ferent regimes in the distinguished limits Ca−1 � 1 and
Ca−1 � 1 in which the surface tension are very small and
very large, respectively. In the former case, the ampli-
tude of the interface deformation induced by the particle
is large, comparable to its diameter, but its influence is

limited to a small region of the order of the particle size.
In this limit, all variables can be expanded asymptoti-
cally as ψ = ψ0 +Ca−1ψ1 with the first correction of the
mass force written as Caf = k3 and k3 a constant that
depends on the position of both particle and interface.
This linear approximation remains valid up to values of
the capillary number of order unity as long as µ1/µ2 > 1.
The limit of very large surface tension Ca−1 � 1 turns
out to be more complicated. As expected, the ampli-
tude of the interface deformation reduces with increasing
Ca−1 and becomes much smaller than the particle’s di-
ameter. Nevertheless, the region of influence of the par-
ticle widens as the surface tension increases, becoming of
the order of the inter-particle distance for capillary num-
bers above a critical value (Ca−1)∗. Above this value, the
asymptotic behaviour of the flow variables become linear
with the capillary number so that Ψ = Ψ0 + Ca−1Ψ1

and f/Ca = k1, with k1 a constant. Below that thresh-
old value Ca−1 < (Ca−1)∗, the relevant characteristic
length λ < L is determined by the surface tension and the
asymptotic behaviour of the solution changes to adopt an
asymptotic profile on the form ψ = ψ0 + Ca2/3ψ1 with
f/Ca = k2Ca

−1/3 and k2 computed numerically in terms
of the parameters of the problem.

∗ mssanz@ing.uc3m.es
[1] O. Pitois, P. Moucheront, and C. Weill, Interface

breakthrough and sphere coating, Comptes Rendus de
l’Academie des Sciences Series IIB Mechanics Physics As-
tronomy 6, 605 (1999).

[2] S. S. Tsai, J. S. Wexler, J. Wan, and H. A. Stone, Con-
formal coating of particles in microchannels by magnetic
forcing, Applied Physics Letters 99, 153509 (2011).

[3] A. Sinha, A. K. Mollah, S. Hardt, and R. Ganguly, Particle
dynamics and separation at liquid–liquid interfaces, Soft
Matter 9, 5438 (2013).

[4] P. Hadikhani, S. M. H. Hashemi, G. Balestra, L. Zhu,
M. A. Modestino, F. Gallaire, and D. Psaltis, Inertial ma-
nipulation of bubbles in rectangular microfluidic channels,
Lab on a Chip 18, 1035 (2018).

[5] J. Magnaudet and M. J.Mercier, Particles, drops, and bub-
bles moving across sharp interfaces and stratified layers,
Annual Review of Fluid Mechanics 52, 61–91 (2020).

mailto:mssanz@ing.uc3m.es
https://doi.org/10.1146/annurev-fluid-010719-060139

	Dynamics of a train of solid particles moving in a channel parallel to a deformable liquid-liquid interface
	Abstract
	Introduction
	Formulation
	Conclusion
	References


